75 research outputs found

    Plant Derived Bioactive Compounds, Their Anti-Cancer Effects as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview

    Get PDF
    For decades, cancer has been a major public health concern worldwide owing to its high mortality rate. Many therapeutic strategies have come up in the scientific world, but it\u27s pitiful to know that synthetic chemotherapeutic agents either cause adverse effects or cancer cells develop resistance to these agents. Plant-derived chemotherapeutic agents present a wide range of therapeutics and most are yet to be discovered. In the current review, we have discussed the tumoricidal properties of Mucuna pruriens (seed), Withania coagulans (berry), Anacyclus pyrethrum (rhizome), Arachis hypogea (leaf), Rhizaoma polygoni (root) and Terminalia chebula (fruit). We have also tried to summarize the latest research in cancer chemoprevention and treatment using the bioactive components from these natural plants. Pharmaceutical developmental challenges and opportunities in bringing the phytochemicals into the market are also explored. The authors wish to expand this research area not only for their scientific soundness, but also for their potential-yet-affordable druggability

    Inhibitory potency of Withania somnifera extracts against DPP-4: an in vitro evaluation

    Get PDF
    Background: Pharmacologic treatments for type 2 diabetes are based upon  increasing insulin availability and improving sensitivity to insulin. Nowadays,  glucagon like peptide-1 (GLP-1) based therapies aims at glucose control through DPP-4 inhibitors. DPP-4 is a transmembrane glycoprotein belongs to prolyl  oligopeptidase family, with the specificity of removing X-Pro or X-Ala dipeptides from the N-terminus of polypeptides. GLP-1 effect by stimulating glucose-dependent insulin release from the pancreatic islets, inhibit inappropriate post-meal glucagon release and slow gastric emptying promoting leaky gut. The current study investigated DPP-4 inhibitory activity of catechin, isolated from Withania somnifera (WS), for ethnopharmacological treatment of type 2 diabetes and aimed to increase availability of GLP-1and sensitivity to insulin.Materials and Methods: Young and matured fresh roots, leaves, and fruits of WS plant extract were considered and were systematically evaluated for DPP-4 inhibitory activity using in vitro method, enzyme kinetics, phytochemical analysis, RP-HPLC, LCMS and 1H and 13C NMR method and structure-activity relationship (SAR) studies.Results: In this study, methanol (100% and 80%) extracts of WS matured root exhibited maximum DPP-4 inhibitory activity when compared to other extracts. The maximum DPP-4 inhibitory activity was found in 100% methanol extract of matured root. Phytobioactive was purified by RP-HPLC. The compound purified was found to be flavonoid and was characterized (LCMS, 1H and 13C NMR studies), identified as catechin. Auxiliary, molecular docking was performed using Ligand Fit method using PatchDock package. The study revealed the binding affinity of catechin with DPP-4 to be -6.601 kcal/mol with 13 hydrogen interactions with the receptor and was very similar to the standard potent blockers withaferin A and others (cuscohygrine, scopoletin, sitoindoside IV, tropine), further confirming its hyperglycemic potency.Conclusion: The study reveals that, 100% methanol extract of WS matured roots contains the compound- catechin, which exhibits DPP-4 inhibitory activity resulting in increased level of bioactive GLP-1 and GIP. In this background, we concluded that the WS will be a better source for further development as new antidiabetic drugs.Keywords: Gly-pro-p-nitroanilide (GPPN), Diprotin-A (Ile-Pro-Ile), Catechin, Withaferin-A, Diabetes and Molecular docking

    Bio prospecting of Lapachol producing endophytic fungi

    Get PDF
    Background: The association of endophytic fungi with medicinal plants has been one of the evolving areas of research in the past few decades. The secondary metabolites produced owing to such associations have been recognised for a wide range of biological activities. Objectives: The aim of the present review is to highlight the isolation of lapachol from endophytic microorganisms with an emphasis on its biotransformation to improve its efficacy. Methodology: The researchers followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Published scientific articles on endophytes, host-pathogen interaction and lapachol isolation were collected from reputed journals from 1960 to 2022 using electronic databases using the key words as stated. Following that, the authors chose the required papers based on the criteria they devised. The data was extracted using the common research elements found in the publications. Results and discussion: Lapachol is one such secondary metabolite known for potent antitumor properties. Synthesis of lapachol and its isolation from plant sources have been reported but an expensive process. Therefore, bioprospecting of this metabolite from endophytic fungi have been evaluated by a few researchers. It has been identified that A. niger and Alternaria alternata along with some of the filamentous endophytic fungi have been identified to produce lapachol. Some findings of biotransformation of lapachol to render it more potent have also been reported in the present review. Conclusion: Lapachol is one of the plant secondary metabolites that possess several therapeutic benefits. Owing to its isolation being highly expensive from plant sources, endophytes have been exploited. Furthering to the isolation, the biotrasformation of this bioactive molecule to enhance its efficiency has proven to be useful. In this regard, this review has enlightened some of the biotransformed lapachol and its derivatives with special emphasis on the endophytes that produce them. This review comprehensively highlights the various endophytic sources for lapachol production and its biotransformed derivatives

    In silico examination of peptides containing selenium and ebselen Backbone To Assess Their Tumoricidal Potential

    Get PDF
    Introduction: Cancer has been one of the highest causes of morbidity and mortality in the world for decades. Owing to improved therapeutics along with detection, breast cancer mortality has been slowly reducing. The incidence of breast cancer, on the other hand, has increased gradually. More than 100 types of cancer have been identified with a wide range of treatment protocols comprising of chemotherapy, radiation therapy, hormone therapy, etc. In an attempt to curb the serious deleterious effects caused by the chemotherapeutic drugs, numerous peptide molecules are currently popular as alternatives to the standard chemotherapeutic drugs. Methods: In this study, we have carried out in silico investigations to ascertain the anti-proliferative potential of novel peptides based on selenium and ebselen, i.e. Eb-Trp-Asp, 13, Eb-Trp-Glu, 14, and Eb-Trp-Lys, 15. Analysis of protein-ligand interactions, resulting in protein-ligand complex formation, has been carried out using the AutoDockVina in PyRx aided molecular docking technique, which may be an essential indication of druggability of the test peptides. Results: The molecular docking results revealed that the screened ligands had extraordinarily strong binding interactions and affinity for the target. Conclusion: Findings suggested that novel peptide molecule Eb-Trp-Glu, 14 may be a potent anticancer agent

    Artificial intelligence and Machine Learning based Techniques in Analyzing the COVID-19 Gene Expression data: A Review

    Get PDF
    The novel Coronavirus associated with respiratory illness has become a new threat to human health as it is spreading very rapidly among the human population. Scientists and healthcare specialists throughout the world are still looking for a breakthrough technology to help combat the Covid-19 outbreak, despite the recent worldwide urgency. The use of Machine Learning (ML) and Artificial Intelligence (AI) in earlier epidemics has encouraged researchers by providing a fresh approach to combating the latest Coronavirus pandemic. This paper aims to comprehensively review the role of AI and ML for analysis of gene expressed data of COVID-1

    INHIBITORY POTENCY OF WITHANIA SOMNIFERA EXTRACTS AGAINST DPP-4: AN IN VITRO EVALUATION

    Get PDF
    Background: Pharmacologic treatments for type 2 diabetes are based upon increasing insulin availability and improving sensitivity to insulin. Nowadays, glucagon like peptide-1 (GLP-1) based therapies aims at glucose control through DPP-4 inhibitors. DPP-4 is a transmembrane glycoprotein belongs to prolyl oligopeptidase family, with the specificity of removing X-Pro or X-Ala dipeptides from the N-terminus of polypeptides. GLP-1 effect by stimulating glucose-dependent insulin release from the pancreatic islets, inhibit inappropriate post-meal glucagon release and slow gastric emptying promoting leaky gut. The current study investigated DPP-4 inhibitory activity of catechin, isolated from Withania somnifera (WS), for ethnopharmacological treatment of type 2 diabetes and aimed to increase availability of GLP-1and sensitivity to insulin. Materials and Methods: Young and matured fresh roots, leaves, and fruits of WS plant extract were considered and were systematically evaluated for DPP-4 inhibitory activity using in vitro method, enzyme kinetics, phytochemical analysis, RP-HPLC, LCMS and 1H and 13C NMR method and structure-activity relationship (SAR) studies. Results: In this study, methanol (100% and 80%) extracts of WS matured root exhibited maximum DPP-4 inhibitory activity when compared to other extracts. The maximum DPP-4 inhibitory activity was found in 100% methanol extract of matured root. Phytobioactive was purified by RP-HPLC. The compound purified was found to be flavonoid and was characterized (LCMS, 1H and 13C NMR studies), identified as catechin. Auxiliary, molecular docking was performed using Ligand Fit method using PatchDock package. The study revealed the binding affinity of catechin with DPP-4 to be -6.601 kcal/mol with 13 hydrogen interactions with the receptor and was very similar to the standard potent blockers withaferin A and others (cuscohygrine, scopoletin, sitoindoside IV, tropine), further confirming its hyperglycemic potency. Conclusion: The study reveals that, 100% methanol extract of WS matured roots contains the compound- catechin, which exhibits DPP-4 inhibitory activity resulting in increased level of bioactive GLP-1 and GIP. In this background, we concluded that the WS will be a better source for further development as new antidiabetic drugs

    QUASISPECIES FEATURE IN SARS-CoV-2

    Get PDF
    Since the identification of the SARS-CoV-2, genus Beta- Coronavirus, in January 2020, the virus quickly spread in less than 3 months to all continents with a susceptible human population of about a 7.9billion, and still in active circulation. In the process, it has accumulated mutations leading to genetic diversity. Regular emergence of variants of concern/significance in different ecology shows genetic heterogeneity in the base population of SARS-CoV-2 that is continuously expanding with the passage of the virus in the vast susceptible human population. Natural selection of mutant occurs frequently in a positive sense (+) single-stranded (ss) RNA virus upon replication in the host.  The Pressure of sub-optimal levels of virus-neutralizing antibodies and also innate immunity influence the process of genetic/ antigenic selection. The fittest of the mutants, that could be more than one, propagate and emerge as variants. The existence of different lineages, clades, and strains, as well as genetic heterogeneity of plaque purified virus population, justifies SARS-CoV-2 as ‘Quasispecies’ that refers to swarms of mutant sequences generated during replication of the viral genome, and all mutant sequences may not lead to virion. Viruses having a quasispecies nature may end up with progressive antigenic changes leading to antigenic plurality that is driven by ecology, and this phenomenon challenges vaccination-based control programs

    Volatile organic compound emissions in free-range chicken production: Impacts on environment, welfare and sustainability

    Get PDF
    The increasing demand for free-range poultry products has led to a surge in their availability in the market, prompting a potential decline in premium prices associated with these products. This shift places considerable pressure on upstream costs in chicken production. A comprehensive under-standing of its impact on the environment is essential to ensure the success of commercial and industrial free-range chicken production. However, there exists a significant knowledge gap concerning the emission and concentrations of volatile organic compounds (VOCs) from organic-free range chicken, and their environmental implications have yet to be understood. We aim to address this critical knowledge gap by elucidating the role of VOC emissions in chicken production and assessing their impact on human and animal health, as well as environmental challenges. Understanding the implications of VOC emissions is essential for promoting sustainable and responsible free-range chicken farming practices. By identifying the sources of VOC emissions and their impacts, stakeholders can implement appropriate measures to optimize air quality and enhance the well-being of chickens and workers. Ultimately, this review highlights the role of VOCs in animal production, providing valuable insights for improving the efficiency, environmental sustainability and welfare aspects of free-range chicken farming

    COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2

    Get PDF
    Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans.  Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses
    • …
    corecore